Explanation of the multiple-spot archery question Matlab program
Below is a somewhat technical explanation of the program used to attempt to answer the question, “Should a beginning archer ever shoot at the middle of a multiple-face target rather than a single-spot target?”  Matlab was used to write the code to answer this question because Matlab is the only programming language I know :-)   I made 2 programs.  One is for a 3-spot multicolor target and the other is for a 5-spot field target.  I recognize that the programs are very poorly documented, but hopefully this document makes up for the lack of documentation in the code.  When I refer to an archer shooting in the middle of a 3-spot target, I mean that the archer is shooting at the white part in the very middle of the paper.  I realize that if the archer does this and hits what he is aiming for, he will not score any points, but if the archer is very inexperienced, it is unlikely that he will actually hit what he is aiming for.  In this explanation I often put punctuation outside of quotation marks for clarity even when it is grammatically incorrect because I felt that it was very important to be clear in this explanation.
This program assumes that the archer has the distance sighted-in and that his groupings, though large, are nonetheless centered about the middle of whatever he is aiming at.  While there are various mental factors involved that may affect an archer’s shooting, this code does not account for them.  The code assumes all of the arrows being shot are of a consistent given diameter.  This particular code assumes that the arrows being shot on multicolor targets have a diameter of 6 mm and that arrows shot on field targets have a diameter of 1 cm.  This code assumes that if  arrows on any given round land in the same target face, the archer will receive no penalty for doing so (It assumes that it’s ok to shoot more than one arrow into the same target face).  This code assumes the archer is shooting at a regular 40-cm target face.  Most importantly, this code assumes that the arrows’ positions on the target are normally distributed (that they fit a bell curve).  This code assumed that, if the center of the target is at the origin (the middle of the graph), the x and y coordinates of the arrows are normally distributed, with a mean (average) of zero and a certain standard deviation.  I do not know how arrows are distributed on a target, but assuming that they are normally distributed seemed fair enough.  I’m sure there is a better way to solve the problem using statistics and higher math (probably involving calculus to some degree), but I don’t know much statistics or higher math, so I used Matlab :-) Below is a picture of the code for the 3-spot program.
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Computer code is divided into “lines”, and generally the computer reads lines from left to right and then from top to bottom, in the same way people read books.  The column of black numbers on the dark gray background on the left side of the picture indicate how many lines of code there are in the program and provide a numbering system for lines of code.  For example, the program above has 24 lines of code and line 19 says “end” in blue writing.  The actual code of the program itself is on the white background in the middle.  Most of the code is black, but some of it is in other colors as well.  I’ll go line-by-line explaining what the code does.  Line 1 is green and starts with a percent sign, which means that it is just commentary about the program and does not actually affect how the code runs, and it is ignored by the computer.  The commentary here is just a note saying that the coordinates are in centimeters and that the program takes about 15 minutes to run.  Line 2 does not have a percent sign and is not green, so it is where the program really begins.  A variable called “meanImprov” is created here.  Capitalization is important and “meanImprov” is an abbreviation for “mean improvement”, which is the average improvement in score an archer can expect to see by shooting at the middle of a 3-spot instead of shooting a 1-spot target face.  The variable is set equal to brackets with nothing between them, which means that it is an array with nothing in it, so it is an empty array.  This essentially means that the variable now exists, but it does not have a numerical value.  The semicolon at the end of line 2 means that the computer should not display “meanImprov = []” in the command window, which is not pictured here.  Almost every line has a semicolon after it, which keeps the computer from displaying information when we do not want it displayed.   Line 3 creates a variable named “arrowRad” (an abbreviation for “arrow radius”) and sets it equal to 0.3, so that the diameter of the arrows the theoretical archer is shooting is 6 mm.  Line 4 has a blue “for” and so it is called a “for loop”.  There is a vertical gray line running from line 4 to line 19, which means that the for loop starts at line 4 and ends at line 19.  In line 4, a variable called “avgScore” is created and is set equal to an array that starts at 70 and ends at 200.  An array in Matlab is a list of numbers.  The colon between 70 and 200 means that the list is a list of integers that starts at 70 and increments by one until it reaches 200, so the list starts with 70, then contains 71, then 72, and so on until it reaches 200.  This means that the computer will run the code inside the for loop (lines 5 through 18) once with “avgScore” equal to 70, the first number in the list, and then run the code again with avgScore equal to 71, and then again with avgScore equal to 72, and so on until avgScore equals 200, when the computer is at the end of the list.  This is so that the program will calculate the improvement in score of an archer who shoots, on average, a 70, and then calculate the improvement for an archer who shoots a 71, and so on until it calculates the improvement in score for an archer who shoots a 200.  Line 5 creates a variable named “CO1” (an abbreviation for coordinate set number 1) and sets it equal to a very large 3-dimensional array full of zeros.  A 1-dimensional array is like a list of numbers.  A 2-dimensional array is a list with both rows and columns, like a spreadsheet in Excel.  A 3-dimensional array is like a 2-dimensional array, or a spreadsheet, with multiple layers, like several spreadsheets stacked on top of each other.  In a 1-dimensional array, you can specify an element of the array with one number (example: the 5th number in a list).  For a 2-dimensional array, you need 2 numbers to specify what element you are referring to (example: the x and y coordinates on a graph).  For a 3-dimensional array, you need three numbers to specify what element you are referring to (The x, y, and z coordinates on a 3-dimensional coordinate plane).  Arrays with 4 or more dimensions can be made in Matlab, but this program does not use arrays with more than 3 dimensions.  In order to describe a 3-dimensional array in Matlab, a list of 3 numbers, separated by commas or spaces, is used.  The first number specifies how many rows are in the array, the second number specifies how many columns there are in the array, and the third number specifies how many layers deep the array is.  Line 5 creates an array with 30 rows, 2 columns, and 190,001 layers.  This array represents the coordinates of the arrows.  In the first columns are the x-coordinates, and in the second columns are the y-coordinates.  Each row specifies which arrow of the round it is (30 arrows in a round) and each layer is a different round.  There are so many rounds because the more data points we have, the more accurate our end result will be.  At this point, all of the coordinates are zero because we have not generated any real data yet.  Line 6 starts another for loop, but this time a variable “j” is iterated from 1 to 190,001, so that it can have one iteration for each round, or each layer of “CO1”.  Line 7 generates the data for the coordinates.  The colons in “CO1(:,:,j)” mean that the code is referring to all the rows and all the columns of the j-th layer of the array “CO1”.  It sets the j-th layer of “CO1” equal to a 30-by-2 array of random, normally distributed numbers with a mean of 0 and a standard deviation of (j-1)/10000+1.  This means that the first layer of “CO1” will have the x and y coordinates of a round of 30 arrows with a standard deviation of 1, the arrows of the second round will have a standard deviation of 1.0001, the third round will have a standard deviation of 1.0002, and so on until the last round has a standard deviation of 20.  As the standard deviation gets larger and larger, the absolute value of the x and y coordinates will get larger and larger, meaning that the groups of the archer will get more and more spread out.  Line 8 has a blue “end” which means that the last for loop ends there.  Line 9 defines a new variable called “scoresOnAOneSpot” and sets it equal to “OneSpotScore2(CO1(:,1,:), CO1(:,2,:), arrowRad);”  “OneSpotScore2” is a function I made and “CO1(:,1,:)”, “CO1(:,2,:)”, and “arrowRad” are separated by commas and are inside the parentheses just after “OneSpotScore2” which means that they are the inputs of the function.  The first input is the x-coordinates of the arrows, the second input is the y-coordinates, and the last input is the radius of the arrows being used.  Using these inputs, the function calculates and returns the score of the arrows on a 1-spot multicolor target, so that the new variable will be a 1-dimensional array of the scores of the arrows.  Below is a picture of the function.  
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Line 1 says that the function will output a variable “score”, that the function will be called “OneSpotScore2”, and that the function will have inputs named “Xco”, “Yco”, and “arrowRad”.  The inputs and outputs are given these names for the purpose of the code of the function itself, but when the function is actually used in a program, the inputs and outputs do not have to have these specific names.  Lines 2, 3, and 4 are just commentary about the function.  Line 5 calculates the distance of the arrows from the center of the target using the Pythagorean theorem, subtracts the radius of the arrow from this distance,  divides it by 2 (because the scoring rings on a multicolor target are 2 cm wide), rounds this number toward zero, and subtracts this from 10.  This should be the score of an arrow on a multicolor target.  However, if the archer missed the target entirely, this would return a negative score of the arrow, and so line 6 sets all the negative scores to zero to avoid this problem.  Line 7 takes the sum of the scores and returns this number as the output of the function.  Line 8 ends the function and lines 9 and 10 are blank.  Line 10 of the main program calculates the standard deviations of the arrows of the rounds that resulted in the desired score.  The new variable, “listOfStds”, 1-dimensional array of the standard deviations of the arrows of the rounds that resulted in the desired score.  “find(scoresOnAOneSpot == avgScore)” returns the indexes of the rounds where the desired score was shot.  So if the arrows of round 97,652 scored the average score of the archer, the number 97,652 would be returned.  The rest of the line subtracts 1 from the number, divides this result by 10,000, and adds 1.  This converts the index of the round to the standard deviation of the arrows of the round.  The standard deviations in this list are the standard deviations of the arrows of the rounds that resulted in the average score of the archer, so line 11 takes the average of these standard deviations and sets a variable named “guessSTD” equal to this number.  This number should be the average standard deviation of the coordinates of the arrows of the archer.  Line 12 creates a variable “CO2” (list of coordinates number 2) and sets it equal to a random, normally distributed, 30-by-2-by-1,000,000 array, with a standard deviation of “guessSTD” and  mean of 0.  This should be a list of the x and y coordinates of the arrows of a million rounds shot by the archer.  Many of these rounds should result in the average score of the archer, but not all of them, because they are comprised of random numbers.  In line 13, a new variable “scoresOnOne” is set equal to the scores of the rounds of “CO2” using the “OneSpotScore2” function.  In line 14, a variable named “CO3” is set equal to the rounds of “CO2” that resulted in the average score of the archer.  This should be a 30-by-2-by-something array, where “something” is a large number but is less than a million.  To find out exactly how large “something” is, line 15 uses the “numel” function to calculate how many layers deep “CO3” is and then sets a new variable “numOfDataPoints” equal to this number.  This variable is not necessary for the program to work, but I put it in just to see how many data points we had to work with and how large our sample size was, because the more data points we have, the more accurate our final answer should be.  Line 16 then uses a function I made called “ThreeSpotScore2” which does the same thing as “OneSpotScore2” but for a 3-spot.  A picture of the code of the function is below.
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It essentially runs the one spot function once for each target face and then sums the scores, taking into account the different positions of each target face and that the lowest score possible (other than zero) on a three-spot is six.  In this program, the 3-spot target face is oriented so that the centers of the faces form an equilateral triangle pointing upward (how the targets are normally positioned) but because the arrows are normally distributed about the center, I don’t think the orientation of the target should matter.  Back in the main program, line 17 subtracts the average score of the archer from the scores he would have gotten had he shot at the middle of a 3-spot and then takes the average of this array.  This number should be the average improvement in score that the archer should get if he shoots at the middle of a 3-spot rather than a 1-spot.  This is an average of a very large list, so individual results will vary widely.  The rest of line 17 adds this number as an element to the end of the array “meanImprov”.  Line 18 displays in a separate window the average score of the archer.  This step is not necessary for the program to work, but I added it in because it tells me how close the program is to being finished, because it can take quite some time to run.  Line 19 ends the main big for loop.  Line 20 creates a graph and plots on the x-axis integers from 70 to 200, which were the average scores of the archer that the program calculated the improvement that could be expected by switching to shooting at the middle of a 3-spot.  On the y-axis it plots the average improvement in score the archer could expect to see.  Line 21 adds a grid to the graph, so it looks like it was plotted on graph paper, which makes the graph a little easier to read.  Line 22 adds a title to the graph, line 23 adds a label to the x-axis, and line 24 adds a label to the y-axis.  And wa-la!  The program is done!   Below is a picture of the graph it made. 
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As you can see, the line is not perfectly smooth and is somewhat jagged.  Because 19 data points were plotted between each set of vertical lines (except the first pair) the roughness of the line provides a visual measure of the uncertainty associated with the graph.  Because so many data points were plotted (131 to be exact), I am pleased that the ridges on the graph are as small as they are.  Of course, because the program relies on manipulating many random numbers, the graph could be made smoother by making the program take the average of larger sets of data (instead of “CO2” being 1,000,000 layers deep, it could be 5,000,000 layers deep, which should make the graph less jagged).  Also, keep in mind that the results predicted by the graph are averages of a very large sample, so archers should not be surprised if they get different results on individual rounds than the averages predicted by the graph.  The program takes the average of thousands and thousands of “rounds” and the individual results of each round vary widely, (I just ran the program using an average score of 150 and “numOfDataPoints” was 24,631, the standard deviation of “scoresOnThree” was 18.5308, and “meanImprov” was 6.8344, which means that the program took an average of 24,631 rounds of arrows and the average improvement of the archer was 6.8344 points, but the scores from individual rounds varied widely.  About 65% of normally distributed data points are contained within one standard deviation of the mean, so although the average improvement was about 7 points, we can be only about 65% certain that the improvement on any individual round will be between -11.7 and 25.4 points.  This large amount of inconsistency in the improvement in score of an archer could be a reason to not shoot at the middle of a 3-spot even when improvement is predicted by the program, especially because consistency is so highly prized in the sport of archery.  
I modified the program to work for field targets as well.  The following is a picture of the main program for the 3-spot question, but modified for 5-spot field targets.  I also modified the scoring functions, but will not go into detail explaining them because they are so similar to the programs for the 3-spot program.  
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Below is a picture of the 1-spot scoring function.
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Below is a picture of the 5-spot scoring function.
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Below is a picture of the graph it produced.
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[bookmark: _GoBack]The chart shows that the score at which an archer’s average score will improve by switching to a 5-spot is about 175, and that, as expected, very experienced archers who shoot better than a 290 are not expected to get different scores by shooting a 5-spot because it is unlikely that they will get a score of 3 or less on a 1-spot.  The same disclaimers about inconsistency I mentioned for the 3-spot program apply here.  When I ran the program with an average score of 175, “numOfDataPoints” was 36,340, “meanImprov” was 1.1193, and the standard deviation of “scoresOnFive” was 14.3223, which means that archers should not be surprised if their scores on individual rounds are not the same as the averages shown on the chart.  
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